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L I N E A R  M O D E L I N G  O F  A  S E L F - O S C I L L AT I N G
 P W M  C O N T R O L  L O O P

There are well established methods of creating linearized versions of PWM control loops to 
analyze stability and to create fast “behavioral” models of the systems that do not rely on evaluating 
behavior during each individual cycle. Unfortunately, even more advanced modeling techniques 
such as state-space averaging are difficult if not impossible to apply to self-oscillating loops such as 
simple hysteretic control.

It is the nonetheless possible to construct fairly accurate models of self-oscillating converters 
using the technique to be disclosed.  This technique is suggested by the analysis of a switching audio 
amplifier in an AES paper by Bruno Putzeys1.

Goal

It is the primary intent of this work to generate a procedure for creating a linearized model 
that will allow:

a) frequency domain simulation of the control loop at baseband frequencies. 

b) fast time domain analysis of transient response (e.g. load regulation, step response)

c) optimization of networks and evaluation of first order sensitivities to component variation.

It is a given that although the system should model the closed feedback of the self-oscillating 
loop, the goal is to analyze not the oscillation, but the response of the system in all respects other 
than the oscillation. This paper will demonstrate that the approach can accurately show the 
oscillatory nature of the system, but that the oscillation can be “turned off ” and the system 
evaluated without regard to the high frequency carrier.

The close matching between a full cycle-by-cycle simulation and the linearized model will be 
demonstrated.

Simple System Model

The systems to be modeled are often used either for switching regulators or in switching audio 
amplifiers, and typically amounts to placing a comparator within a feedback loop.  The comparator, 
often with hysteresis, drives a power switching node rail-to-rail, and an output filter reconstructs a 
DC or audio frequency signal from the switching output. This output, typically including some small 
ripple, will be fed back to the comparator in appropriate phase for a conventional negative 
feedback loop. But the nature of the hysteretic input or just arbitrarily high gain of the overall 
feedback control loop causes the system to oscillate continually.

	


1 Putzeys, Bruno, “Simple Self-Oscillating Class D Amplifier with Full Output Filter Control” Presented at the 118 AES 
Convention, May 2005, Preprint  [ http://www.ciaudio.com/ucd_aes.pdf ]

http://www.ciaudio.com/ucd_aes.pdf
http://www.ciaudio.com/ucd_aes.pdf


Figure 1 shows a simple switching regulator composed of three basic blocks. At left is a 
controller featuring an ideal (zero delay, near infinite gain) comparator, a digital delay, and an output 
stage. This is followed by an output filter LC network, shown here without its associated parasitic 
elements other than the series resistance of the inductor.  A feedback network connects both to 
the switching output of the controller block and to the output of the LC network. In the following 
example, this will be analyzed as a 20MHz buck converter.

fig.1  Simple Self-oscillating Buck Converter

Figure 1 is a very simple model of the type of systems that are of interest. It was chosen not 
because it is a good way to build a self-oscillating loop, but rather because it is simple and 
compact. It is the goal to be able to analyze systems that are more sophisticated and include 
parasitic elements. The limitations of this system allow for easier verification of results. Note for 
instance that that the system shown has no DC feedback from the final output, only the switching 
node. The loop therefore cannot correct for the output impedance error of 100mΩ R3.

Although figure 1 shows a comparator with no hysteresis, it can be shown that hysteresis and 
delay are in many ways equivalent in self-oscillating loops.  An increase in hysteresis can be 
correlated to an equivalent increase in delay.  In this linearized model, the hysteresis will be ignored 
and changes in linear delay will be a surrogate for hysteresis. 

This is not yet a very good buck regulator, as we can verify with a transient simulation. We 
increase the reference voltage V1 from 0 to 1.8V in the first 10µs, and after a while we hit the 
output with a 500mA load pulse. We can see that there is a finite load regulation (the 100mΩ 
series resistance of the inductor), and some ringing. Trying two values for feedback resistor R2 gives 
different amounts of overshoot. But changing the value of R2 by a factor of 2 didn’t change the 
switching frequency appreciably (from 19.8MHz to 20.2MHz, about 2% change). It seems to have 
mainly affected the closed loop damping, but not the small signal bandwidth.
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fig. 2 Response of buck regulator ; settling and load step

A simplified model of this system, for simplicity, would replace the controller at left with a linear  
system that could be analyzed without switching. The comparator, delay, and switch can in fact be 
replaced by a linear amplifier with a finite output impedance and a characteristic delay.  The difficult 
question: how much gain does this system seem to have? 

fig 3.  Linearized System

LINEARIZED MODELING	
 3	
 June 2012



Determining Gain of the Loop

In a classic PWM modulator with a ramp compared to a control voltage, the effective gain is 
inversely proportional to the swing of the ramp. (Going from zero duty cycle to full duty cycle 
requires the control voltage to swing from just below the ramp to just above it.) One way to look 
at self-oscillating schemes is that they essentially have a ramp (ripple) at the input, created in this 
case by the switching waveform and R2/C2.  The smaller this ramp, the higher the effective gain. 
Since the waveform at the comparator input is not strictly a ramp or ‘triangle wave’, the small signal 
gain is more accurately described as inversely proportional to the ripple dV/dt at the time the 
comparator is tripped.

Since the feedback network is generally a lowpass, the magnitude of the effective ramp is 
related to the attenuation from the switching node to the feedback node. By assuming the 
switching node is a square wave, and make some often reasonable assumptions on the resulting 
dV/dt, Putzeys’ generalized that the effective gain is essentially magnitude of the feedback 
attenuation at the switching frequency with a minor fudge factor. But the assumptions presume that 
the comparator input is dominated by the fundamental of the square wave, and that the slope at 
which this sinusoid crosses zero is the applicable slope. Examination of real waveforms in practical 
systems lends little credence to these assumptions.

Putzys’ small signal modeling often shows a high frequency “bump” near the supposed oscillating 
frequency. It seemed a little odd that the linear system didn’t oscillate, until it was realized that he 
did not simulate any delay or hysteresis associated with his modulator/power stages. This suggested 
an alternate strategy: if the linear model can be made to oscillate like the target system, the model 
should accurately be in a small signal condition that is similar to the self-oscillating system.

Real oscillators must meet two criteria. First, the gain around the loop is 360 degrees at the 
frequency of oscillation, and the loop gain is precisely unity. In practice, oscillators have a gain set 
higher than unity, such that the magnitude of the resonance will increase (exponentially) with time. 
But real oscillators include some nonlinearity, such that as the magnitude of the oscillation 
increases, the gain effectively drop. The fixed output magnitude of a switching system or a clipped 
amplifier will often provide the reduction in gain needed to bring the system back to unity loop 
gain. 

So it is reasonable that the system can be modeled by determining the gain needed to create 
the conditions for a stable ooscillation around the bias point. This means that the gain provided by 
our amplifier should be precisely enough to compensate for the attenuation of our output filter, a 
criteria correlated to, and actually simpler than that of Putzys.

This simplification gives excellent correlation in all systems yet modeled. If we consider the case 
of the circuit of figure 1, we can measure this attenuation with a straightforward AC analysis. 
Sweeping an AC source at the switch node and plotting attenuation through the filter (including 
both the output filter and the feedback network, we get attenuation of 42dB and 36dB for the 
cases of 200k and 100k feedback resistors for R2. This corresponds to loop gains of about 120 and 
60 (42 and 36dB).
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fig. 4  Attenuation of feedback network

We can plug these numbers back into the linear circuit of figure 3 and look at the closed loop 
response. Figure 5 shows both a nominal rolloff and sharp peak around 20MHz. The delay element 
was adjusted to pull this peak frequency to match the 20MHz switching frequency. If this response 
were truly oscillatory, one might the peak should go to infinity. In practice, the loop gain and phase 
must be set precisely for simulation to show this. In fact, the highest peaking I obtained in simulation 
was about 180 dB, but to see that, one had to sweep the frequency quite finely, as the magnitude 
dropped by 50 dB if one was only 1Hz off resonance. And the precision of the gain adjust was such 
that changing the gain by 0.05 ppm was enough to degrade the peak by 40dB. But we aren’t really 
interested in a precise linear model of this oscillation!. This is a means to adjusting the gain and phase 
suitably realistically for modeling the response away from the oscillation point. We just want at this 
point to see that there is a sharp peak that indicates that we have properly identified the gain and 
delay elements to be very close in practice to the point of oscillation.

fig. 5 Closed loop response of linearized system
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We do not want our linear model to oscillate, but we want the response to otherwise mimic 
reality. If we remove the delay element, our linear model looses (in this case) about 90 degrees of 
phase lag at 20Mhz, and the peaking/oscillation goes away. But the delay has no appreciable impact 
at lower frequencies; the 90 degree phase lead we just added is less than 2 degrees of phase error 
the -3dB point of 500kHz. Figure 6 shows the change in closed-loop response in the case of the 
poorly damped system with R2=100k. And unlike how critical it may be to get the gain 
approximated just right to get the system to look oscillatory, the open loop gain was also adjusted 
+/- 6dB with little appreciable effect on the low frequency loop response.

fig. 6 Linearized system; delay removed and loop gain varied

Verifying the linear system

In order to verify the linearized model, we need only replace our comparator/delay/switch 
model with the linearized gain block (gain and output impedance, but ignoring delay), and we can 
re-simulate the turn-on settling and load step of figure 2. Figure 7 shows the results, with the upper 
graph being the full simulation reported in figure 2, and the lower graph the same conditions 
simulated with the linearized model.
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fig 7. Linearized simulation compared to full simulations of fig. 2, 
for the cases of R2=100k and R2=200k

Procedure

1. Simulate or measure target system; measure frequency of oscillation, capture a 
transient behavior for later verification.

2. Measure the attenuation of the filter from switch node to feedback node at the 
switching frequency.

3. Set the magnitude of the linear amplifier to equal the attenuation value, and set its 
output impedance to be that of the output switches.

4. Adjusting the delay element to get the proper frequency of operation, verify that the 
system with linear amp and delay would self-oscillate at the frequency measured in 1 
above. (Some adjustment of gain may be needed)

5. Removing the delay, test the full loop under the conditions of (1) above and verify 
similar behavior.

Now that the model exists, standard techniques to play with loop compensation etc. 
can be used to optimize the system. Bode analysis can be used (breaking the linear loop to 
isolate open loop and closed loop responses). Output impedance of the system can be 
examined in either a transient analysis or an AC analysis. 

If substantive changes have been made, it may be desirable to take the modified system 
back to step (1) and recreate a new linear model, but as shown above, even moderate 
changes in loop gain typically are not critical to the closed loop response.
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